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Abstract. The information theoretical structure of a noisy one-dimensional dynamics is 
investigated. The framework of mutual information and the information flow is given, and 
the mutual information is calculated in the BZ (Belousov-Zhabotinskii) reaction map and 
the logistic map. The computational results show the real mechanism of a curious behaviour 
of noisy dynamics. 

1. Introduction 

We have found a curious noise effect in a certain class of one-dimensional mappings- 
noise-induced order (Matsumoto and Tsuda 1983). In our previous papers (Mat- 
sumoto and Tsuda 1983, Matsumoto 1983, Tsuda and Matsumoto 1984) on this 
phenomenon, studies from several directions were attempted. Phenomenologically, 
noise-induced order appears as the change of the Lyapounov exponent to negative 
value, the appearance of a sharp peak in the power spectrum, the localisation of orbits 
and an abrupt decrease of entropy. This phenomenon indicates a difference in the 
character of the ‘randomness’ between chaos and noise. Furthermore, this directly 
stems from a certain kind of non-uniformity character of the strange attractor, which 
produces non-uniformity of the Markov partition. A modified transition matrix was 
constructed, the entropy was calculated and was checked with the result of the 
simulation. It was also indicated that noise can change the dynamics, in other words, 
there exists hidden dynamics in this class of maps. However, the real cause of this 
phenomenon was left unresolved. 

The purpose of the present paper is to clarify its real mechanism. We introduce 
new methodology suitable for treating this kind of change of the dynamics. Namely 
we investigate ‘information’ to resolve the real cause of the noise-induced order. In 
§ 2, the framework of mutual information and information flow is given. In § 3, using 
this framework, we investigate the informational aspect of one-dimensional mappings. 
In § 4, the results are discussed and a scenario of noise-induced order is shown. Section 
5 contains a summary. 

2. The framework of mutual information and information flow 

Let us introduce the Kullback information 
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where p I  is the probability distribution and qz the standard distribution on a discrete 
space. This measures the amount of information contained in p relative to q. Usually 
q is taken as an invariant density or uniform density. 

The difference of the amount of information the probability distribution changes 
p ,  to p :  can be expressed by the difference of the Kullback information. Particularly 
in the case of one-dimensional mappings, this difference of the Kullback information 
gives the change in the amount of information contained in the initial distribution. 
Taking a continuous limit (now Ik(p) = p(x)  log(p(x)/q(x)) dx)  this difference can 
be expressed by 

I k  ( P) - I k  ( FP ) f (2.2) 

where F is the Frobenius-Perron operator of a map f :  

Taking an appropriate set of densities { p i }  which sum to the invariant density po(x), 
one can obtain the average difference of the Kullback information by summing the 
difference for each pi 

( I k ( P i )  - zk(Fpi)) 
I 

(2.3) 

This can be called the information flow (Shaw 1981). Here let us takepi(x) =po(x)xi(x) ,  
where ,y,(x) is a characteristic function of one element of an appropriate partition. 
Then we have the following expression 

1 (Ik(pi)-Ik(Fpi)) 
I 

Putting pi(x) = Fpi(x)/Fpo(x), we have 

(2.4) 

pi(x) is the probability of the previous point of x being in the ith element of the 
partition. If the map is one-to-one on each element of the partition, the right-hand 
side of (2 .5 )  is precisely the amount of information required to map a point inversely. 
Therefore, this quantity is the amount of information of initial condition lost per 
iteration. This equals the Lyapounov exponent if po(x) is absolutely continuous: 

One can measure the amount of information transmitted between two places by 
the mutual information I. Suppose the signal i is sent from one place, and at the other 

zi (zk(pi)-Ik(Fpi))=spO(X) logIdf/dxIdx (=A). 
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place the signal j (not necessarily i) is received. Let p (  i, j )  be the joint probability of 
its occurrence and the conditional probability p (  j /  i) = p (  i, j ) / p (  i) .  Then the mutual 
information is defined by 

Let us consider the relation between the transmitted information and the lost 
information. Divide the unit interval into, say, 100 equal segments and let po( i) be the 
probability of finding the orbital point in the ith segment. Then po( j /  i) is the transition 
probability under the mapping from i to j .  We obtain approximately the expression 
F ( , y , ( x ) )  = po( j /  i ) x , ( x ) .  Substituting this expression into ( 2 . 5 ) ,  we obtain 

( I k ( p i ) -  z k ( F p r ) )  

Therefore, the second term of the right-hand side of ( 2 . 6 )  is just the expression ( 2 . 7 ) .  
If the partition becomes finer, the first term of the right-hand side of ( 2 . 6 )  becomes 
larger, but the second term remains nearly equal to the information loss (equation ( 2 . 5 ) ) .  

It  is convenient to consider a ‘computer register’ (figure 1) in order to explain the 
difference between the mutual information and the information flow. The above 
partition corresponds to observing this register only through the highest, say four, 
places. The mutual information accounts for all information escaping from this 
window. But the information flow has a sign according to its direction, and only its 
average is a matter of concern. The information loss is equal to the information flow. 
Only in the case when the fluctuation of information flow is small do we obtain the 
equality in expression ( 2 . 7 ) .  In other words, one can see the fluctuation of information 
flow in terms of the mutual information. 

Window 

Window 

Figure 1. Computer register: ( a )  indicates the noise-free case and ( b )  the noisy case. The 
window corresponds to the width of the observation. 

3. Calculation method and mutual information 

Our window of observation here is the partition of the unit interval into 100 equal 
segments. Then a condition of the system is specified by the number i of the segment 
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in which the system is found. The amount of information gained about the initial 
condition when we know the condition after n interations is given by 
I , (  i ;  j ) :  

where p n ( j / i )  is the conditional probability of a point started from the ith segment 
falling in the j t h  segment after n iterations. In the present calculation, we start with 
10 000 points uniformly distributed over each segment of the partition and calculate 
p n ( j / i ) .  We calculate I,,(i;j) for the BZ m a p  and the logistic map with and without 
noise. The results are shown in figure 2 ( a ) - ( d ) .  The following three points are of 
importance: 

(i) the linear decrease in the logistic map, 
(ii) the exponential decrease in the BZ map, 
(iii) the humps in the noise-free BZ map. 

We discuss these points in the next section. 

Iteration 

1 

I terat ion 

I terat ion 

\ id 1 

- 
Iteration  

Figure 2. Mutual information: ( a )  and ( b )  indicate the noiseless and the noisy case 
respectively in the BZ map. ( c )  and ( d )  show the noiseless and the noisy case respectively 
in the logistic map. 

4. Discussion 

(i) The linear decrease corresponds to a simple picture of the information flow, 
namely the average information flow consists of a monotonic flow directed to the 
left-hand side of the register in figure 1. Therefore, the mutual information loses as 
much as the information flow carries away, in other words, (2 .7)  is correct. We have 
the expression I,, = lo - An, where A is the Lyapounov exponent, since the information 
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flow rate is equal to the Lyapounov exponent. This situation is essentially the same 
as in the Bernoulli map ( X , , ,  = 2X,(mod 1)).  

(ii) The situation is very different in this case. Clearly, (2.7) does not hold. The 
average information flow directed to the left-hand side of the register is a sum of 
contributions from the right-directed flow as well as the left-directed flow. 

As a result it is conceivable that the information contained in a place of the register 
spreads over the whole register in subsequent iterations. On the other hand, the 
information loss occurs at the largest scale (i.e. at the left end of the register) as seen 
in (2.5). From these two ei'fects, the mutual information decreases at the same rate in 
any time, namely, I ,  = lor" .  As the information loss equals the Lyapounov exponent, 
I,( 1 - r )  = A holds. This relation does not assert that Io - I ,  = A. As mentioned pre- 
viously, the right-directed flow additionally carries away the information in the window. 
Thus r must be obtained from fitting the whole curve of mutual information. 

(iii) In the case without noise, the information that has flowed to the right-hand 
side of the register must return to the window, since the information loss mechanism 
does not exist there. This is the reason why the hump appears in the curve of mutual 
information as shown in figure 2( a ) .  When the noise is on, the additional information 
loss mechanism works near the right end of the register. So the hump disappears, as 
shown in figure 2 ( b ) .  

We checked the relation between mutual information and the Lyapounov exponent 
in several cases. Now, the mechanism of noise-induced order is apparent. A significant 
amount of information about the initial condition is erased by the noise in maps like 
the BZ, for the information carried by the right-directed flow is caught by the noise 
and destroyed. This implies a drastic change in the dynamics. For maps of logistic 
type this is not the case: the information of the initial condition flows to the left end 
of the register where noise cannot reach. The information flow is safe from the noise. 
The existence of the phenomenon 'noise-induced order' is clearly checked from the 
feature of the curve of mutual information. 

In the case of periodic orbits, the initial information is consumed at the right end 
of the register. In this respect, the BZ map with noise is the intermediate case between 
chaos and periodicity. 

5. Summary and outlook 

There are two types of decay of information about the initial condition. One is a linear 
decay and the other is an exponential decay. In the former case, the initially localised 
information remains localised in subsequent time. In the latter case, the initially 
localised information spreads considerably and information mixing occurs. Further- 
more, in the latter case, the chaos itself is fragile, because extended information is 
easily destroyed by noise. 

One cannot overlook the important application of the present result to the memory 
mechanism of the brain. It is known that the holographic memory plays an important 
role in the brain (Kohonen 1984, Pribram 1971). Our result-the exponential decay 
of the information-clearly indicates that a part of the whole information is contained 
in each place of the  register. This shows the possibility to give a concrete mechanism 
of the holographic memory of the brain. One should note that this holographic character 
of the information appears only in the system with hidden dynamics, i.e. implicated 
order. In the brain, the maps of the BZ type (not of the logistic type) might exist. 
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